Induction of antitumor immunity in vivo following delivery of a novel HPV-16 DNA vaccine encoding an E6/E7 fusion antigen.
نویسندگان
چکیده
Human papillomavirus type 16 (HPV-16) infection is associated with a majority of cervical cancers and a significant proportion of head and neck cancers. Here, we describe a novel-engineered DNA vaccine that encodes a HPV-16 consensus E6/E7 fusion gene (pConE6E7) with the goal of increasing its antitumor cellular immunity. Compared to an early stage HPV-16 E7 DNA vaccine (pE7), this construct was up to five times more potent in driving E7-specific cellular immune responses. Prophylactic administration of this vaccine resulted in 100% protection against HPV E6 and E7-expressing tumors. Therapeutic studies indicated that vaccination with pConE6E7 prevented or delayed the growth of tumors. Moreover, immunization with pConE6E7 could also partially overcome immune tolerance in E6/E7 transgenic mice. Such DNA immunogens are interesting candidates for further study to investigate mechanisms of tumor immune rejection in vivo.
منابع مشابه
Antitumor Effects of HPV DNA Vaccine Adjuvanted with Beclin-1 as an Autophagy Inducer in a Mice Model
Background: There is a growing interest in development of an effective adjuvant system for improving DNA vaccines. Recent findings have confirmed an important role for autophagy in both innate and adaptive immunity. The current study was undertaken to determine the efficacy of autophagy induction with Beclin-1, as a novel adjuvant system, in mice immunized with human papilloma virus (HPV) DNA v...
متن کاملAntitumor Response to a Codon-Optimized HPV-16 E7/HSP70 Fusion Antigen DNA Vaccine
Background: Vaccines based on virus-like particles are effective against Human Papilloma Virus (HPV) infection; however, they have not shown a therapeutic effect against HPV-associated diseases. New immunotherapy strategies based on immune responses against tumor antigens can positively affect the clearance of HPV-associated lesions. Objective: To generate two therapeutic fusion DNA vaccines (o...
متن کاملCTL Responses to a DNA Vaccine Encod-ing E7 Gene of Human Papillomavirus Type 16 from an Iranian Isolate
Background: Cervical cancer is the most prevalent tumor in developing countries and the second most frequent cancer among female population worldwide. Specific human papillomaviruses and, most notably, HPV types 16 and 18 are recognized as being caus-ally associated with cervical carcinomas. The early HPV type 16 genes, E6 and E7, di-rectly participate in the in vitro transformation of primary ...
متن کاملTattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7
The skin is an attractive organ for immunization because of the presence of antigen-presenting cells. Intradermal delivery via tattooing has demonstrated superior vaccine immunogenicity of DNA vaccines in comparison to conventional delivery methods. In this study, we explored the efficacy of tattoo injection of a tumor vaccine based on recombinant Semliki Forest virus replicon particles (rSFV) ...
متن کاملDNA-Based Vaccine Is More Efficient than Non-Pathogenic Live Vaccine for the Prevention of HPV16 E7-Overexpressing Cancers
Introduction: Vaccinology provides promising approaches for the control of various infectious diseases. Among different strategies, DNA vaccines offer attractive research opportunities for development of vaccines for induction of antigen-specific immunity owing to their stability, simplicity of delivery, safety and cost effectiveness. However, there is a need to increase their potency by the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vaccine
دوره 27 3 شماره
صفحات -
تاریخ انتشار 2009